skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Yongchun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A Low-rank Spectral Optimization Problem (LSOP) minimizes a linear objective function subject to multiple two-sided linear inequalities intersected with a low-rank and spectral constrained domain. Although solving LSOP is generally NP-hard, its partial convexification (i.e., replacing the domain with its convex hull), termed “LSOP-R, is often tractable and yields a high-quality solution. This motivates us to study the strength of LSOP-R. Specifically, we derive rank bounds for any extreme point of LSOP-R in different matrix spaces and prove their tightness. The proposed rank bounds recover two well-known results in the literature from a fresh angle and allow us to derive sufficient conditions under which the relaxation LSOP-R is equivalent to LSOP. To effectively solve LSOP-R, we develop a column generation algorithm with a vector-based convex pricing oracle and a rank-reduction algorithm, which ensures that the output solution always satisfies the theoretical rank bound. Finally, we numerically verify the strength of LSOP-R and the efficacy of the proposed algorithms. 
    more » « less
  2. Globerson, Amir; Mackey, Lester; Belgrave, Danielle; Fan, Angela; Paquet, Ulrich; Tomczak, Jakub; Zhang, Chao (Ed.)
  3. Sparse principal component analysis (SPCA) is designed to enhance the interpretability of traditional principal component analysis by optimally selecting a subset of features that comprise the first principal component. Given the NP-hard nature of SPCA, most current approaches resort to approximate solutions, typically achieved through tractable semidefinite programs or heuristic methods. To solve SPCA to optimality, we propose two exact mixed-integer semidefinite programs (MISDPs) and an arbitrarily equivalent mixed-integer linear program. The MISDPs allow us to design an effective branch-and-cut algorithm with closed-form cuts that do not need to solve dual problems. For the proposed mixed-integer formulations, we further derive the theoretical optimality gaps of their continuous relaxations. Besides, we apply the greedy and local search algorithms to solving SPCA and derive their first-known approximation ratios. Our numerical experiments reveal that the exact methods we developed can efficiently find optimal solutions for data sets containing hundreds of features. Furthermore, our approximation algorithms demonstrate both scalability and near-optimal performance when benchmarked on larger data sets, specifically those with thousands of features. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms—Discrete. Funding: This research was supported in part by the Division of Civil, Mechanical and Manufacturing Innovation [Grant 224614], the Division of Computing and Communication Foundations [Grant 2246417], and the Office of Naval Research [Grant N00014-24-1-2066]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0372 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0372 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ . 
    more » « less
  4. This paper studies a classic maximum entropy sampling problem (MESP), which aims to select the most informative principal submatrix of a prespecified size from a covariance matrix. By investigating its Lagrangian dual and primal characterization, we derive a novel convex integer program for MESP and show that its continuous relaxation yields a near-optimal solution. The results motivate us to develop a sampling algorithm and derive its approximation bound for MESP, which improves the best known bound in literature. We then provide an efficient deterministic implementation of the sampling algorithm with the same approximation bound. Besides, we investigate the widely used local search algorithm and prove its first known approximation bound for MESP. The proof techniques further inspire for us an efficient implementation of the local search algorithm. Our numerical experiments demonstrate that these approximation algorithms can efficiently solve medium-size and large-scale instances to near optimality. Finally, we extend the analyses to the A-optimal MESP, for which the objective is to minimize the trace of the inverse of the selected principal submatrix. Funding: This work was supported by the National Science Foundation Division of Information and Intelligent Systems [Grant 2246417] and Division of Civil, Mechanical and Manufacturing Innovation [Grant 2246414]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/opre.2023.2488 . 
    more » « less
  5. We study the D-optimal Data Fusion (DDF) problem, which aims to select new data points, given an existing Fisher information matrix, so as to maximize the logarithm of the determinant of the overall Fisher information matrix. We show that the DDF problem is NP-hard and has no constant-factor polynomial-time approximation algorithm unless P = NP. Therefore, to solve the DDF problem effectively, we propose two convex integer-programming formulations and investigate their corresponding complementary and Lagrangian-dual problems. Leveraging the concavity of the objective functions in the two proposed convex integer-programming formulations, we design an exact algorithm, aimed at solving the DDF problem to optimality. We further derive a family of submodular valid inequalities and optimality cuts, which can significantly enhance the algorithm performance. We also develop scalable randomized-sampling and local-search algorithms with provable performance guarantees. Finally, we test our algorithms using real-world data on the new phasor-measurement-units placement problem for modern power grids, considering the existing conventional sensors. Our numerical study demonstrates the efficiency of our exact algorithm and the scalability and high-quality outputs of our approximation algorithms. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms—Discrete. Funding: Y. Li and W. Xie were supported in part by Division of Civil, Mechanical and Manufacturing Innovation [Grant 2046414] and Division of Computing and Communication Foundations [Grant 2246417]. J. Lee was supported in part by Air Force Office of Scientific Research [Grants FA9550-19-1-0175 and FA9550-22-1-0172]. M. Fampa was supported in part by Conselho Nacional de Desenvolvimento Científico e Tecnológico [Grants 305444/2019-0 and 434683/2018-3]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/ijoc.2022.0235 . 
    more » « less